Estimating Functions for Discretely

نویسندگان

  • Jan Nygaard Nielsen
  • Lars Jensen
  • Henrik Madsen
چکیده

hagen] are generalized to facilitate parameter estimation in discretely observed stochastic diierential equations, where the observations are corrupted by additive white noise. This generalization provides an optimal solution to the parameter estimation problem in terms of estimating functions as an alternative to methods based on the Kalman lter or higher order lters. Using Monte Carlo simulation the new method is compared to simple and explicit estimating functions, and a second order nonlinear lter. The study shows that the new method outperforms the other methods and that optimal weights are required for estimating the diiusion parameter.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Parametric inference for discretely sampled stochastic differential equations

A review is given of parametric estimation methods for discretely sampled multivariate diffusion processes. The main focus is on estimating functions and asymptotic results. Maximum likelihood estimation is briefly considered, but the emphasis is on computationally less demanding martingale estimating functions. Particular attention is given to explicit estimating functions. Results on both fix...

متن کامل

Estimating Functions for Discretely Sampled Diffusion-Type Models

Estimating functions provide a general framework for finding estimators and studying their properties in many different kinds of statistical models, including stochastic process models. An estimating function is a function of the data as well as of the parameter to be estimated. An estimator is obtained by equating the estimating function to zero and solving the resulting estimating equation wi...

متن کامل

Prediction-based Estimating Functions for Diffusion Processes with Measurement Noise

The prediction-based estimating functions proposed by (Sørensen, 1999) are generalized to facilitate parameter estimation in discretely observed stochastic differential equations, where the observations are corrupted by additive white noise. The new class of estimating functions has most of the nice properties of martingale estimating functions. However, they may be applied when no obvious or e...

متن کامل

Simpliied Estimating Functions for Diiusion Models with a High-dimensional Parameter

We consider estimating functions for discretely observed diiusion processes of the following type: For one part of the parameter of interest we propose to use a simple and explicit estimating function of the type studied by Kessler (1996); for the remaining part of the parameter we use a martingale estimating function. Such an approach is particularly useful in practical applications when the p...

متن کامل

Discretely Observed Diffusions: Approximation of the Continuous-time Score Function

We discuss parameter estimation for discretely observed, ergodic diffusion processes where the diffusion coefficient does not depend on the parameter. We propose using an approximation of the continuous-time score function as an estimating function. The estimating function can be expressed in simple terms through the drift and the diffusion coefficient and is thus easy to calculate. Simulation ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007